Investigations of ripple pattern formation on Germanium surfaces using 100-keV Ar+ ions

نویسندگان

  • Indra Sulania
  • Dinesh Agarwal
  • Mushahid Husain
  • Devesh Kumar Avasthi
چکیده

We have investigated the formation of nanoripples on the surface of germanium, Ge(100), due to the effect of 100-keV Ar (+) ion irradiation. The irradiation was carried out at different incidence angles from 0° to 75° in steps of 15° with respect to the surface normal with a fixed ion fluence of approximately 3 × 10(17) ions/cm(2). Atomic force micrographs show an increase in surface roughness from 0.5 to 4.3 nm for the pristine sample and the sample irradiated at 60° incidence angle due to cos(-1)(θ) dependence on sputtering yield. With increase in angle of incidence, there is transition observed from nanodots to aligned nanodots perpendicular to the direction of the beam. There is an increase in size of the nanostructures observed from 44 to 103 nm with angle of incidence. The formation of nanoripples initiates at an angle of θ ~ 45°. Ripple pattern formation has taken place on the Ge surface in the energy regime of 100 keV as compared to the other reports which had been carried out using very low energy ions. Raman spectra reveal that the near surface of crystalline Ge samples becomes amorphous due to interaction of Ar(+) ions due to creation of defects through collision cascades.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoscale surface pattern formation kinetics on germanium irradiated by Kr+ ions

Nanoscale surface topography evolution on Ge surfaces irradiated by 1 keV Kr+ ions is examined in both directions perpendicular and parallel to the projection of the ion beam on the surface. Grazing incidence small angle x-ray scattering is used to measure in situ the evolution of surface morphology via the linear dispersion relation. A transition from smoothing (stability) to pattern-forming i...

متن کامل

Enhanced surface diffusion in forming ion-beam-induced nanopatterns on Si (001)

The diffusion process on Si (0 0 1) in the presence of a 5 keV Ar+ ion beam has been investigated by monitoring initiation of ripple-pattern formation. The morphology of the surface obtained by scanning tunnelling microscopy measurements in ultrahigh vacuum were characterized using the height-difference correlation function. These measurements clearly show formation of nanostructured ripple pat...

متن کامل

Ripple coarsening on ion beam-eroded surfaces

The temporal evolution of ripple pattern on Ge, Si, Al 2 O 3, and SiO 2 by low-energy ion beam erosion with Xe (+) ions is studied. The experiments focus on the ripple dynamics in a fluence range from 1.1 × 10(17) cm(-2) to 1.3 × 10(19) cm(-2) at ion incidence angles of 65° and 75° and ion energies of 600 and 1,200 eV. At low fluences a short-wavelength ripple structure emerges on the surface t...

متن کامل

Ion-Induced Nanoscale Ripple Patterns on Si Surfaces: Theory and Experiment

Nanopatterning of solid surfaces by low-energy ion bombardment has received considerable interest in recent years. This interest was partially motivated by promising applications of nanopatterned substrates in the production of functional surfaces. Especially nanoscale ripple patterns on Si surfaces have attracted attention both from a fundamental and an application related point of view. This ...

متن کامل

Self-Assembled Gold Nano-Ripple Formation by Gas Cluster Ion Beam Bombardment

In this study, we used a 30 keV argon cluster ion beam bombardment to investigate the dynamic processes during nano-ripple formation on gold surfaces. Atomic force microscope analysis shows that the gold surface has maximum roughness at an incident angle of 60° from the surface normal; moreover, at this angle, and for an applied fluence of 3 × 1016 clusters/cm², the aspect ratio of the nano-rip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015